Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37241258

RESUMO

Photocatalytic degradation is an environmentally friendly way to eliminate environmental pollution. Exploring a photocatalyst with high efficiency is essential. In the present study, we fabricated a Bi2MoO6/Bi2SiO5 heterojunction (BMOS) with intimate interfaces via a facile in situ synthesis method. The BMOS had much better photocatalytic performance than pure Bi2MoO6 and Bi2SiO5. The sample of BMOS-3 (3:1 molar ratio of Mo:Si) had the highest removal efficiency by the degradation of Rhodamine B (RhB) up to 75% and tetracycline (TC) up to 62% within 180 min. The increase in photocatalytic activity can be attributed to constructing high-energy electron orbitals in Bi2MoO6 to form a type II heterojunction, which increases the separation efficiencies of photogenerated carriers and transfer between the interface of Bi2MoO6 and Bi2SiO5. Moreover, electron spin resonance analysis and trapping experiments showed that the main active species were h+ and •O2- during photodegradation. BMOS-3 maintained a stable degradation capacity of 65% (RhB) and 49% (TC) after three stability experiments. This work offers a rational strategy to build Bi-based type II heterojunctions for the efficient photodegradation of persistent pollutants.

2.
Materials (Basel) ; 16(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36837143

RESUMO

Second phases play a significant role in the development of high-performance magnesium alloys with rare earth elements. Here, in situ tensile tests combined with synchrotron radiation were carried out to investigate the deformation behavior of ß phases in a WE (Mg-Y-Gd-Nd) alloy. By lattice strain analysis, it was found that micro load continuously transferred from the soft α-Mg matrix to the hard ß phases during the whole plastic deformation, while this behavior was much more obvious at the beginning of deformation. Based on diffraction peak broadening, Williamson-Hall (W-H) plotting was used to study the microstrain of ß phases. The results showed that the microstrain of ß phases increased rapidly within 4% plastic strain and reached the maximum at plastic strain of ~6.5%. Since the ß phases acted as hard phases, the microstrain was considered as a sign of the stress concentration near phase interfaces. It was also suggested that the effective release of local stress concentration at the ß/α-Mg interface benefited the ductility of the WE alloy by the plastic deformation of ß phases and phase interface sliding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...